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Abstract

We provide a general model of dynamic competition in an oligopolistic industry with
investment, entry, and exit. To ensure that there exists a computationally tractable
Markov perfect equilibrium, we introduce firm heterogeneity in the form of randomly
drawn, privately known scrap values and setup costs into the model. Our game of
incomplete information always has an equilibrium in cutoff entry/exit strategies. In
contrast, the existence of an equilibrium in the Ericson & Pakes (1995) model of in-
dustry dynamics requires admissibility of mixed entry/exit strategies, contrary to the
assertion in their paper, that existing algorithms cannot cope with. In addition, we
provide a condition on the model’s primitives that ensures that the equilibrium is in
pure investment strategies. Building on this basic existence result, we first show that
a symmetric equilibrium exists under appropriate assumptions on the model’s primi-
tives. Second, we show that, as the distribution of the random scrap values/setup costs
becomes degenerate, equilibria in cutoff entry/exit strategies converge to equilibria in
mixed entry/exit strategies of the game of complete information.

1 Introduction

Building on the seminal work of Maskin & Tirole (1988a, 1988b, 1987), the industrial or-
ganization literature has made considerable progress over the past few years in analyzing
the dynamics of industry. In an important paper, Ericson & Pakes (1995) provide a com-
putable model of dynamic competition in an oligopolistic industry with investment, entry,
and exit. Their framework is a valuable addition to economists’ toolkits. Its applications
to date have yielded numerous novel insights and it provides a starting point for ongoing
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research in industrial organization and other fields (see Doraszelski & Pakes (2007) for a
survey). More recently, Aguirregabiria & Mira (2007), Bajari, Benkard & Levin (2007),
Pakes, Ostrovsky & Berry (2007), and Pesendorfer & Schmidt-Dengler (2008) have devel-
oped estimation procedures that allow the researcher to recover the primitives that underlie
the dynamic industry equilibrium. Consequently, it is now possible to take these models to
the data with the goal of conducting counterfactual experiments and policy analyses (e.g.,
Gowrisankaran & Town 1997, Jofre-Bonet & Pesendorfer 2003, Benkard 2004, Beresteanu
& Ellickson 2006, Collard-Wexler 2006, Ryan 2006).

To achieve this goal the researcher has to be able to compute the stationary Markov per-
fect equilibrium using the estimated primitives. This, in turn, requires that an equilibrium
exists. Unfortunately, existence can not be guaranteed under the conditions in Ericson &
Pakes (1995). Moreover, existence by itself is not enough for two reasons. First, contrary to
the assertion in their paper, the existence of an equilibrium in the Ericson & Pakes (1995)
model of industry dynamics requires admissibility of mixed strategies over discrete actions
such as entry and exit. But computing mixed strategies poses a formidable challenge (even
in the context of finite games; see McKelvey & McLennan (1996) for a survey). Second, the
state space of the model explodes in the number of firms and quickly overwhelms current
computational capabilities. An important means of mitigating this “curse of dimension-
ality” is to impose symmetry restrictions. For these reasons, computational tractability
requires existence of a symmetric equilibrium in pure strategies.

Our goal in this paper is to modify the Ericson & Pakes (1995) model just enough to
ensure that there exists for it a stationary Markov perfect equilibrium that is computable
in both theory and practice.1 In doing so, we have to resolve three difficulties that we now
discuss in detail.

Cutoff entry/exit strategies. In the Ericson & Pakes (1995) model, incumbent firms
decide in each period whether to remain in the industry and potential entrants decide
whether to enter the industry. But the existence of an equilibrium cannot be ensured
without allowing firms to randomize, in one way or another, over these discrete actions.
Since Ericson & Pakes (1995) do not provide for such mixing, a simple example suffices to
show that their claim of existence cannot possibly be correct (see section 3).2

To eliminate the need for mixed entry/exit strategies without jeopardizing existence, we
extend Harsanyi’s (1973) technique for purifying mixed-strategy Nash equilibria of static

1Given that an equilibrium exists, an important question is whether or not it is unique. In the Online
Appendix to this paper, we show that multiplicity may be an issue in Ericson & Pakes’s (1995) framework
even if symmetric restrictions are imposed by providing three examples of multiple symmetric equilibria.

2The game-theoretic literature has, of course, recognized the importance of randomization but relies
on computationally intractable mixed strategies (see Mertens (2002) for a survey). Strictly speaking, the
existence theorems in the extant literature are not even applicable because they cover dynamic stochastic
games with either discrete (e.g., Fink 1964, Sobel 1971, Maskin & Tirole 2001) or continuous actions (e.g.,
Federgruen 1978, Whitt 1980), whereas the Ericson & Pakes (1995) model combines discrete entry/exit
decisions with continuous investment decisions.
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games to Markov perfect equilibria of dynamic stochastic games and assume that at the
beginning of each period each potential entrant is assigned a random setup cost payable upon
entry, and each incumbent firm is assigned a random scrap value received upon exit. Setup
costs/scrap values are privately known, i.e., while a firm learns its own setup cost/scrap
value prior to making its decisions, its rivals’ setup costs/scrap values remain unknown
to it. Adding firm heterogeneity in the form of these randomly drawn, privately known
setup costs/scrap values leads to a game of incomplete information. This game always has
an equilibrium in cutoff entry/exit strategies that existing algorithms—notably Pakes &
McGuire (1994, 2001)—can handle after minor changes. Although a firm formally follows a
pure strategy in making its entry/exit decision, the dependence of its entry/exit decision on
its randomly drawn, privately known setup cost/scrap value implies that its rivals perceive
the firm as if it was following a mixed strategy. Note that random setup costs/scrap values
can substitute for mixed entry/exit strategies only if they are privately known. If they were
publicly observed, then its rivals could infer with certainty whether or not the firm will
enter/exit the industry. In this manner Harsanyi’s (1973) insight that a perturbed game of
incomplete information can purify the mixed-strategy equilibria of an underlying game of
complete information enables us to settle the first and perhaps central difficulty in devising
a computationally tractable model.3

Over the years, the idea of using random setup costs/scrap values instead of mixed
entry/exit strategies has become part of the folklore in the literature following Ericson &
Pakes (1995). Pakes & McGuire (1994) suggest treating a potential entrant’s setup cost as
a random variable to overcome convergence problems in their algorithm. Gowrisankaran
(1999a) has an informal but very clear discussion of how randomization can resolve existence
issues whenever entry, exit, or mergers are allowed (see pp. 66–68). Nevertheless, neither
that paper nor Gowrisankaran (1995) provide a precise, rigorous, and reasonably general
statement of how randomization can be inserted into the Ericson & Pakes (1995) model so
as to guarantee existence.

More recently, in independent work, Aguirregabiria & Mira (2007) and Pesendorfer
& Schmidt-Dengler (2008) use randomly drawn, privately known shocks to establish the
existence of a Markov perfect equilibrium in general dynamic stochastic games with finite
state and action spaces.4 The primary difference between their discrete-choice frameworks
and our model is that we allow for continuous as well as discrete actions. Since discretizing
continuous actions tends to complicate both the estimation and computation of the model
most applied work treats actions such as advertising (e.g., Doraszelski & Markovich 2007),
investment (e.g., Besanko & Doraszelski 2004, Beresteanu & Ellickson 2006, Ryan 2006), and

3There is an interesting parallel between our paper that puts “noise” in the payoffs and papers that put
“noise” in the state-to-state transitions in order to overcome existence problems in dynamic stochastic games
with continuous state spaces, see the excellent summary of this literature in Chakrabarti (1999).

4The working paper versions of these two papers and our paper were all initially circulated between May
2003 and September 2004: see Pesendorfer & Schmidt-Dengler (2003), Doraszelski & Satterthwaite (2003),
and Aguirregabiria & Mira (2004)
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price (e.g., Besanko, Doraszelski, Kryukov & Satterthwaite 2010) as continuous variables.
The arguments we develop here can be used to guarantee existence in all these cases.

The existing literature also leaves open the important question whether the “trick” of
using random setup costs/scrap values changes the nature of strategic interactions among
firms. We show that, as the distribution of the random scrap values/setup costs becomes
degenerate, an equilibrium in cutoff entry/exit strategies of the incomplete-information
game converges to an equilibrium in mixed entry/exit strategies of the complete-information
game (see section 7). Hence, the addition of random scrap values/setup costs does not
change the nature of strategic interactions among firms. An immediate consequence of
our convergence result is there exists an equilibrium in the Ericson & Pakes (1995) model
provided that mixed entry/exit strategies are admissible.

Pure investment strategies. In addition to deciding whether to remain in the industry,
incumbent firms also decide how much to invest in each period in the Ericson & Pakes (1995)
model. Since mixed strategies over continuous actions are impractical to compute, the
second difficulty is to ensure pure investment strategies. One way to forestall the possibility
of mixing is to make sure that a firm’s optimal investment level is always unique. To achieve
this, we define a class of transition functions—functions which specify how firms’ investment
decisions affect the industry’s state-to-state transitions—that we call unique investment
choice (UIC) admissible and prove that if the transition function is UIC admissible, then a
firm’s investment choice is indeed uniquely determined (see section 5). UIC admissibility is
an easily verifiable condition on the model’s primitives and is not overly limiting. Indeed,
while the transition functions used in the vast majority of applications of Ericson & Pakes’s
(1995) framework are UIC admissible, they all restrict a firm to transit to immediately
adjacent states. Our condition establishes that this is unnecessary, and we show how to
specify more general UIC admissible transition functions.

In subsequent work, Escobar (2008) establishes the existence of a Markov perfect equi-
librium in pure strategies in a general dynamic stochastic game with a countable state space
and a continuum of actions.He follows an approach similar to ours by first proving existence
under the assumption that a player’s best reply is convex for any value of continued play
and then characterizing the class of per-period payoffs and transition functions that ensure
that this is indeed the case. Since a unique best reply is a special case of a convex best
reply, his condition is more general than ours and may be applied to games with continuous
actions other than the investment decisions in the Ericson & Pakes (1995) model.5

5Other work on existence in pure strategies includes Dutta & Sundaram (1992) (resource extraction
games), Amir (1996) (capital accumulation games), Curtat (1996) and Nowak (2007) (supermodular games),
and Horst (2005) (games with weak interactions among players). Chakrabarti (2003) studies games with a
continuum of players in which the per-period payoffs and the transition density function depend only on the
average response of the players.
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Symmetry. The third and final difficulty in devising a computationally tractable model
is to ensure that the equilibrium is not only in pure strategies, but is also symmetric. We
show that this is the case under appropriate assumptions on the model’s primitives (see
section 6). Symmetry is important because it eases the computational burden considerably.
Instead of having to compute value and policy functions for all firms, under symmetry it
suffices to compute value and policy functions for one firm. In addition, symmetry reduces
the size of the state space on which these functions are defined. Besides its computational
advantages, a symmetric equilibrium is an especially convincing solution concept in models
of dynamic competition with entry and exit because there is often no reason why a partic-
ular entrant should be different from any other entrant. Rather, firm heterogeneity arises
endogenously from the idiosyncratic outcomes that the ex ante identical firms realize from
their investments.

Resolving these difficulties allows us to fulfill our goal of establishing that there always
exists a stationary Markov perfect equilibrium that is symmetric and in pure strategies.
A further goal of this paper is to provide a step-by-step guide to formulating models of
dynamic industry equilibrium that is detailed enough to allow the reader to easily adapt
its techniques to models that are tailored to specific industries. We hope that such a guide
enables others to construct their models with the confidence that if their algorithm fails
to converge, it is a computational problem, not a poorly specified model for which no
equilibrium exists.

The plan of the paper is as follows. We develop the model in section 2. In section 3 we
provide simple examples to illustrate the key themes of the subsequent analysis. We turn
to the analysis of the full model in sections 4–7. Section 8 concludes.

2 Model

We study the evolution of an industry with heterogeneous firms. The model is dynamic,
time is discrete, and the horizon is infinite. There are two groups of firms, incumbent firms
and potential entrants. An incumbent firm has to decide each period whether to remain in
the industry and, if so, how much to invest. A potential entrant has to decide whether to
enter the industry and, if so, how much to invest. Once these decisions are made, product
market competition takes place.

Our model accounts for firm heterogeneity in two ways. First, we encode all character-
istics that are relevant to a firm’s profit from product market competition (e.g., production
capacity, cost structure, or product quality) in its “state.” A firm is able to change its
state over time through investment. While a higher investment today is no guarantee for
a more favorable state tomorrow, it does ensure a more favorable distribution over future
states. By acknowledging that a firm’s transition from one state to another is subject to
an idiosyncratic shock, our model allows for variability in the fortunes of firms even if they
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carry out identical strategies. Second, to account for differences in opportunity costs across
firms we assume that incumbents have random scrap values (received upon exit) and that
entrants have random setup costs (payable upon entry). Since a firm’s particular circum-
stances change over time, we model scrap values and setup costs as being drawn anew each
period.

States and firms. Let N denote the number of firms. Firm n is described by its state
ωn ∈ Ω where Ω = {1, . . . , M, M + 1} is its set of possible states. States 1, . . . , M describe
an active firm while state M +1 identifies the firm as being inactive.6 At any point in time
the industry is completely characterized by the list of firms’ states ω = (ω1, . . . , ωN ) ∈ S

where S = ΩN is the state space.7 We refer to ωn as the state of firm n and to ω as the
state of the industry.

If N∗ is the number of incumbent firms (i.e., active firms), then there are N − N∗

potential entrants (i.e., inactive firms). Thus, once an incumbent firm exits the industry, a
potential entrant automatically takes its “slot” and has to decide whether or not to enter
the industry.8 Potential entrants are drawn from a large pool. They are short-lived and
base their entry decisions on the net present value of entering today; potential entrants
do not take the option value of delaying entry into account. In contrast, incumbent firms
are long-lived and solve intertemporal maximization problems to reach their exit decisions.
They discount future payoffs using a discount factor of β.

Timing. In each period the sequence of events is as follows:

1. Incumbent firms learn their scrap value and decide on exit and investment. Potential
entrants learn their setup cost and decide on entry and investment.

2. Incumbent firms compete in the product market.

3. Exit and entry decisions are implemented.

4. The investment decisions of the remaining incumbents and new entrants are carried
out and their uncertain outcomes are realized.

Throughout we use ω to denote the state of the industry at the beginning of the period
and ω′ to denote its state at the end of the period after the state-to-state transitions are
realized. Firms observe the state at the beginning of the period as well as the outcomes of
the entry, exit, and investment decisions during the period.

6This formulation allows firms to differ from each other in more than one dimension. Suppose that a firm
is characterized by its capacity and its marginal cost of production. If there are M1 levels of capacity and
M2 levels of cost, then each of the M = M1M2 possible combinations of capacity and cost defines a state.

7Time-varying characteristics of the competitive environment are easily added to the description of the
industry. Besanko & Doraszelski (2004), for example, add a demand state to the list of firms’ states in order
to study the effects of demand growth and demand cycles on capacity dynamics.

8Limiting the number of potential entrants to N −N∗ is not innocuous. Increasing N −N∗ by increasing
N exacerbates the coordination problem that potential entrants face.
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While the entry, exit, and investment decisions are made simultaneously, we assume
that an incumbent’s investment decision is carried out only if it remains in the industry.
Similarly, we assume that an entrant’s investment decision is carried out only if it enters
the industry. It follows that an optimizing incumbent firm will choose its investment at the
beginning of each period under the presumption that it does not exit this period, and an
optimizing potential entrant will do so under the presumption that it enters the industry.

Incumbent firms. Suppose ωn 6= M + 1 and consider incumbent firm n. We assume
that at the beginning of each period each incumbent firm draws a random scrap value φn

from a distribution F (·) with expectation E (φn) = φ.9 Scrap values are independently and
identically distributed across firms and periods. Incumbent firm n learns its scrap value φn

prior to making its exit and investment decisions, but the scrap values of its rivals remain
unknown to it. Let χn(ω, φn) = 1 indicate that the decision of incumbent firm n, who has
drawn scrap value φn, is to remain in the industry in state ω and let χn(ω, φn) = 0 indicate
that its decision is to exit the industry, collect the scrap value φn, and perish. Since this
decision is conditioned on its private φn, it is a random variable from the perspective of
other firms. We use ξn(ω) =

∫
χn(ω, φn)dF (φn) to denote the probability that incumbent

firm n remains in the industry in state ω.
This is the first place where our model diverges from Ericson & Pakes (1995), who as-

sume that scrap values are constant across firms and periods. As we show in section 3,
deterministic scrap values raise serious existence issues. In the limit, however, as the dis-
tribution of φn becomes degenerate, our model collapses to theirs.

If an incumbent remains in the industry, it competes in the product market. Let πn(ω)
denote the current profit of incumbent firm n from product market competition in state
ω. We stipulate that πn(·) is a reduced-form profit function that fully incorporates the
nature of product market competition in the industry. In addition to receiving a profit, the
incumbent incurs the investment xn(ω) ∈ [0, x̄] that it decided on at the beginning of the
period and moves from state ωn to state ω′n 6= M + 1 in accordance with the transition
probabilities specified below.

Potential entrants. Suppose that ωn = M + 1 and consider potential entrant n. We
assume that at the beginning of each period each potential entrant draws a random setup
cost φe

n from a distribution F e(·) with expectation E (φe
n) = φe. Like scrap values, setup

costs are independently and identically distributed across firms and periods, and its setup
cost is private to a firm. If potential entrant n enters the industry, it incurs the setup cost
φe

n. If it stays out, it receives nothing and perishes. We use χe
n(ω, φe

n) = 1 to indicate that
the decision of potential entrant n, who has drawn setup cost φe

n, is to enter the industry
in state ω and χe

n(ω, φe
n) = 0 to indicate that its decision is to stay out. From the point

9It is straightforward to allow firm n’s scrap value φn to vary systematically with its state ωn by replacing
F (·) by Fωn(·).
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of view of other firms ξe
n(ω) =

∫
χe

n(ω, φe
n)dF e(φe

n) denotes the probability that potential
entrant n enters the industry in state ω.

Unlike an incumbent, the entrant does not compete in the product market. Instead
it undergoes a setup period upon committing to entry. The entrant incurs its previously
chosen investment xe

n(ω) ∈ [0, x̄e] and moves to state ω′n 6= M +1. Hence, at the end of the
setup period, the entrant becomes an incumbent.

This is the second place where we generalize the Ericson & Pakes (1995) model. They
assume that, unlike exit decisions, entry decisions are made sequentially. We assume that
entry decisions are made simultaneously, thus allowing more than one firm per period to
enter the industry in an uncoordinated fashion. We also allow the potential entrant to
make an initial investment in order to improve the odds that it enters the industry in a
more favorable state. This contrasts with Ericson & Pakes (1995) where the entrant is
randomly assigned to an arbitrary position and thus has no control over its initial position
within the industry.10

We make these two changes because industry evolution frequently takes the form of a
preemption race (e.g., Fudenberg, Gilbert, Stiglitz & Tirole 1983, Harris & Vickers 1987,
Besanko & Doraszelski 2004, Doraszelski & Markovich 2007). During such a race firms
invest heavily as long as they are neck-and-neck. But once one of the firms manages to pull
ahead, the lagging firms “give up,” thereby allowing the leading firm to attain a dominant
position. In a preemption race, an early entrant has a head start over a late entrant, so an
imposed order of entry may prove to be decisive for the structure of the industry. Moreover,
denying an entrant control over its initial position within the industry makes it all the harder
to “catch up.” Our specification of the entry process does not suffer from these drawbacks
and makes the model more realistic by endogenizing the intensity of entry activity. As
an additional benefit, our parallel treatment of entry and exit as well as incumbents’ and
entrants’ investment decisions simplifies the model’s exposition and eases the computational
burden.

Notation. In what follows we identify the nth incumbent firm with firm n in states
ωn 6= M + 1 and the nth potential entrant with firm n in state ωn = M + 1. That is, we
define

χe
n(ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN , φe) = χn(ω1, . . . , ωn−1,M + 1, ωn+1, . . . , ωN , φe),

ξe
n(ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN ) = ξn(ω1, . . . , ωn−1,M + 1, ωn+1, . . . , ωN ),

xe
n(ω1, . . . , ωn−1, ωn, ωn+1, . . . , ωN ) = xn(ω1, . . . , ωn−1,M + 1, ωn+1, . . . , ωN ).

Since ωn indicates whether firm n is an incumbent firm or a potential entrant, we henceforth
omit the superscript e to distinguish entrants from incumbents.

10We may nest their formulation by setting x̄e = 0.
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Transition probabilities. The probability that the industry transits from today’s state
ω to tomorrow’s state ω′ is determined jointly by the investment decisions of the in-
cumbent firms that remain in the industry and the potential entrants that enter the in-
dustry. Formally the transition probabilities are encoded in the transition function P :
S2 × {0, 1}N × [0, max{x̄, x̄e}]N× → [0, 1]. Thus, P (ω′, ω, χ (ω, φ) , x (ω)) is the probability
that the industry moves from state ω to state ω′ given that firms’ exit and entry deci-
sions are χ (ω, φ) = (χ1 (ω, φ1) , . . . , χN (ω, φN )) and their investment decisions are x (ω) =
(x1 (ω) , . . . , xN (ω)).11 Necessarily P (ω′, ω, χ (ω, φ) , x (ω)) ≥ 0 and

∑
ω′∈S P (ω′, ω, χ (ω, φ) , x (ω)) =

1.
In the special case of independent transitions, the transition function P (·) can be fac-

tored as ∏

n=1,...,N

Pn(ω′n, ωn, χn (ω, φn) , xn (ω)),

where Pn (·) gives the probability that firm n transits from state ωn to state ω′n conditional
on its exit or entry decision being χn(ω, φn) and its investment decision being xn(ω). In
general, however, transitions need not be independent across firms. Independence is vio-
lated, for example, in the presence of demand or cost shocks that are common to firms or
in the presence of externalities.

Since a firm’s scrap value or setup cost is private information, its exit or entry decision
is a random variable from the perspective of an outside observer. The outside observer
thus has to “integrate out” over all possible realizations of firms’ exit and entry decisions
to obtain the probability that the industry transits from state ω to state ω′:

∫
. . .

∫
P (ω′, ω, χ(ω, φ), x(ω))

∏

n=1,...,N,
ωn 6=M+1

dF (φn)
∏

n=1,...,N,
ωn=M+1

dF e(φe
n)

=
∑

ι∈{0,1}N

[
P (ω′, ω, ι, x(ω))

∏

n=1,...,N

ξn(ω)ιn(1− ξn(ω))1−ιn
]
. (1)

To see this, recall that scrap values and setup costs are independently distributed across
firms. Since, from the point of view of other firms, the probability that incumbent firm
n remains in the industry in state ω is ξn(ω) =

∫
χn(ω, φn)dF (φn) and the probability

that potential entrant n enters the industry is ξn(ω) =
∫

χn(ω, φe
n)dF e(φe

n), a particu-
lar realization ι = (ι1, . . . , ιN ) of firms’ exit and entry decisions occurs with probability∏

n=1,...,N ξn(ω)ιn(1− ξn(ω))1−ιn . In this manner equation (1) results from conditioning on
all possible realizations of firms’ exit and entry decisions ι.

The crucial implication of equation (1) is that the probability of a transition from
state ω to state ω′ hinges on the exit and entry probabilities ξ(ω). Thus, when forming

11Given our notational convention, if ωn = M + 1 so that firm n is a potential entrant, then we interpret
χn(ω, φn) as χe

n(ω, φe
n), the decision of potential entrant n, who has drawn setup cost φe

n, to enter the
industry in state ω, and we similarly interpret xn(ω) as xe

n(ω).
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an expectation over the industry’s future state, a firm does not need to know the entire
exit and entry rules χ−n(ω, ·) of its rivals; rather it suffices to know their exit and entry
probabilities ξ−n(ω).

An incumbent’s problem. Suppose that the industry is in state ω with ωn 6= M +
1. Incumbent firm n solves an intertemporal maximization problem to reach its exit and
investment decisions. Let Vn(ω, φn) denote the expected net present value of all future cash
flows to incumbent firm n, computed under the presumption that firms behave optimally,
when the industry is in state ω and the incumbent has drawn scrap value φn. Note that
its scrap value is part of the payoff-relevant characteristics of the incumbent firm. This is
rather obvious: an incumbent that can sell off its assets for one dollar may behave very
differently than an otherwise identical incumbent that can sell off its assets for one million
dollars. Hence, once incumbent firm n has learned its scrap value φn, its decisions and thus
also the expected net present value of its future cash flows, Vn(ω, φn), depend on it. Unlike
deterministic scrap values, random scrap values are part of the state space of the game.
This is undesirable from a computational perspective because the computational burden is
increasing with the size of the state space. Fortunately, as we show below, integrating out
over the random scrap values eliminates their disadvantage but preserves their advantage
for ensuring the existence of an equilibrium.

Vn(ω, φn) is defined recursively by the solution to the following Bellman equation

Vn(ω, φn) = sup
χ̃n(ω,φn)∈{0,1},

x̃n(ω)∈[0,x̄]

πn(ω) + (1− χ̃n(ω, φn))φn + χ̃n(ω, φn)
{
− x̃n(ω)

+βE {Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}
}

, (2)

where, with an overloading of notation, Vn(ω) =
∫

Vn(ω, φn)dF (φn) is the expected value
function. Note that while Vn(ω, φn) is the value function after the firm has drawn its scrap
value, Vn(ω) is the expected value function, i.e., the value function before the firm has drawn
its scrap value. The RHS of the Bellman equation is composed of the incumbent’s profit
from product market competition πn(ω) and, depending on the exit decision χ̃n(ω, φn),
either the return to exiting, φn, or the return to remaining in the industry. The latter is
given by the term inside brackets and is in turn composed of two parts: the investment
x̃n(ω, φn) and the net present value of the incumbent’s future cash flows, βE {Vn(ω′)|·}.
Several remarks are in order. First, since scrap values are independent across periods, the
firm’s future returns are described by its expected value function Vn (ω′). Second, recall
that ω′ denotes the state at the end of the current period after the state-to-state transitions
have been realized. The expectation operator reflects the fact that ω′ is unknown at the
beginning of the current period when the decisions are made. The incumbent conditions
its expectations on the decisions of its rivals, ξ−n(ω) and x−n(ω). It also conditions its
expectations on its own investment choice and presumes that it remains in the industry in
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state ω, i.e., it conditions on ω′n 6= M + 1.
Since investment is chosen conditional on remaining in the industry, the problem of

incumbent firm n can be broken up into two parts. First, the incumbent chooses its invest-
ment. The optimal investment choice is independent of the firm’s scrap value, and there
is thus no need to index xn(ω) by φn. This also justifies making the expectation operator
conditional on x−n(ω) (as opposed to scrap-value specific investment decisions). Second,
given its investment choice, the incumbent decides whether or not to remain in the industry.
The incumbent’s exit decision clearly depends on its scrap value, just as its rivals’ exit and
entry decisions depend on their scrap values and setup costs. Nevertheless, it is enough to
condition on ξ−n(ω) in light of equation (1).

The optimal exit decision of incumbent firm n who has drawn scrap value φn is a cutoff
rule characterized by

χn(ω, φn) =

{
1 if φn < φ̄n(ω),
0 if φn ≥ φ̄n(ω),

where

φ̄n(ω) = sup
x̃n(ω)∈[0,x̄]

−x̃n(ω) + βE {Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)} (3)

denotes the cutoff scrap value for which the incumbent is indifferent between remaining
in the industry or exiting. Hence, the solution to the incumbent’s decision problem has
the reservation property. Moreover, under appropriate assumptions on F (·) (see section 4),
incumbent firm n has a unique optimal exit choice for all scrap values. Without loss of
generality, we can therefore restrict attention to decision rules of the form 1[φn < φ̄n(ω)],
where 1[·] denotes the indicator function. These decision rules can be represented in two
ways:

1. with the cutoff scrap value φ̄n(ω) itself; or

2. with the probability ξn(ω) of incumbent firm n remaining in the industry in state ω.

This is without loss of information because ξn(ω) =
∫

χn(ω, φn)dF (φn) =
∫

1[φn < φ̄n(ω)]dF (φn) =
F (φ̄n(ω)) is equivalent to F−1(ξn(ω)) = φ̄n(ω).12 The second representation proves to be
more useful and we use it below almost exclusively.

Next we turn to payoffs. Imposing the reservation property and integrating over φn on
12If the support of F (·) is bounded, we define F−1(0) to be its minimum and F−1(1) to be its maximum.
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both sides of equation (2) yields

Vn(ω) =
∫

sup
ξ̃n(ω)∈[0,1],
x̃n(ω)∈[0,x̄]

πn(ω) + (1− 1[φn < F−1(ξ̃n(ω))])φn + 1[φn < F−1(ξ̃n(ω))]
{
− x̃n(ω)

+βE {Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}
}

dF (φn)

= sup
ξ̃n(ω)∈[0,1],
x̃n(ω)∈[0,x̄]

πn(ω) + (1− ξ̃n(ω))φ +
∫

φn>F−1(ξ̃n(ω))
(φn − φ)dF (φn) + ξ̃n(ω)

{
− x̃n(ω)

+βE {Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}
}

. (4)

Two essential points should be noted: First, an optimizing incumbent cares about the
expectation of the scrap value conditional on collecting it, E

{
φn|φn > F−1(ξ̃n(ω))

}
, rather

than its unconditional expectation E (φn) = φ. The term
∫
φn>F−1(ξ̃n(ω))(φn − φ)dF (φn) =

(1− ξ̃n(ω))
(
E

{
φn|φn > F−1(ξ̃n(ω))

}
− φ

)
captures the difference between the conditional

and the unconditional expectation. It reflects our assumption that scrap values are random
and, consequently, is not present in a game of complete information such as Ericson &
Pakes (1995), where scrap values are constant across firms and periods. Second, the state
space is effectively the same in the games of incomplete and complete information since the
constituent parts of the Bellman equation (4) depend on the state of the industry ω but
not on the random scrap value φn. Hence, by integrating out over the random scrap values,
we have successfully eliminated their computational disadvantage.

An entrant’s problem. Suppose that the industry is in state ω with ωn = M + 1. The
expected net present value of all future cash flows to potential entrant n when the industry
is in state ω and the firm has drawn setup cost φe

n is

Vn(ω, φe
n) = sup

χ̃n(ω,φe
n)∈{0,1},

x̃n(ω)∈[0,x̄e]

χ̃n(ω, φe
n)

{
− φe

n − x̃n(ω)

+βE {Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}
}

. (5)

Since the entrant is short-lived it does not solve an intertemporal maximization problem
to reach its decisions.13 Depending on the entry decision χn(ω, φe), the RHS of the above
equation is either 0 or the expected return to entering the industry, which is in turn com-
posed of two parts. First, the entrant pays the setup cost and sinks its investment, yielding
a current cash flow of −φe

n − x̃n(ω). Second, the entrant takes the net present value of its
future cash flows into account. Since potential entrant n becomes incumbent firm n at the
end of the setup period, this is given by βE {Vn(ω′)|·}. The entrant conditions its expecta-
tions on the decisions of its rivals, ξ−n(ω) and x−n(ω). It also conditions its expectations

13It is easy to allow for long-lived entrants by adding the term (1 − χ̃n(ω, φe
n))βE {Vn(ω′)|ω, ω′n = M +

1, x̃n(ω, φe
n), ξ−n(ω), x−n(ω)} to equation (5).

12
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on its own investment choice and presumes that it enters the industry in state ω, i.e., it
conditions on ω′n 6= M + 1.

Similar to the incumbent’s problem, the entrant’s problem can be broken up into two
parts. Since investment is chosen conditional on entering the industry, the optimal invest-
ment choice xn(ω) is independent of the firm’s setup cost φe

n. Given its investment choice,
the entrant then decides whether or not to enter the industry. The optimal entry decision
is characterized by

χn(ω, φe
n) =

{
1 if φe

n ≤ φ̄
e
n(ω),

0 if φe
n > φ̄

e
n(ω),

where

φ̄
e
n(ω) = sup

x̃n(ω)∈[0,x̄e]
−x̃n(ω) + βE

{
Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)

}
(6)

denotes the cutoff setup cost. As with incumbents, the solution to the entrant’s decision
problem has the reservation property and we can restrict attention to decision rules of
the form 1[φe

n < φ̄
e
n(ω)] that can be alternatively represented by the probability ξn(ω) of

potential entrant n entering the industry in state ω. Imposing the reservation property and
integrating over φe

n on both sides of equation (5) yields

Vn(ω) = sup
ξ̃n(ω)∈[0,1],
x̃n(ω)∈[0,x̄e]

−
∫

φe
n<F e−1(ξ̃n(ω))

(φe
n − φe)dF e(φe

n) + ξ̃n(ω)
{
− φe − x̃n(ω)

+βE {Vn(ω′)|ω, ω′n 6= M + 1, x̃n(ω), ξ−n(ω), x−n(ω)}
}

. (7)

The term − ∫
φe

n<F e−1(ξ̃n(ω))(φ
e
n−φe)dF e(φe

n) is again not present in a setting with complete
information.

Actions, strategies, and payoffs. An action or decision for firm n in state ω specifies
either the probability that the incumbent remains in the industry or the probability that
the entrant enters the industry along with an investment choice: un(ω) = (ξn(ω), xn(ω)) ∈
Un(ω) where

Un(ω) =

{
[0, 1]× [0, x̄] if ωn 6= M + 1,

[0, 1]× [0, x̄e] if ωn = M + 1
(8)

denotes firm n’s feasible actions in state ω.
We restrict attention to stationary Markovian strategies. A strategy or policy for firm

n is a single function from states into actions; it specifies an action un(ω) ∈ Un(ω) for each
state ω. Such a strategy is called Markovian because it is restricted to be a function of the
current state rather than the entire history of the game. It is called stationary because it
does not directly depend on calendar time, i.e., the firm plays the same action un(ω) each

13
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time the industry is in state ω.14

Define Un = ×ω∈SUn(ω) to be the strategy space of firm n. Any element of the set Un

is a stationary Markovian strategy. Further define U = ×N
n=1Un to be the strategy space

of the entire industry. By construction in equation (8), the set of feasible actions Un(ω)
is nonempty, convex, and compact (as long as x̄ < ∞ and x̄e < ∞). It follows that the
strategy spaces Un and U are also nonempty, convex, and compact.

Turning to payoffs, the Bellman equations (4) and (7) of incumbent firm n and potential
entrant n, respectively, can be more compactly stated as

Vn(ω) = sup
ũn∈Un(ω)

hn(ω, ũn(ω), u−n(ω), Vn), (9)

where

hn(ω, u(ω), Vn)

=





πn(ω) + (1− ξn(ω))φ +
∫
φn>F−1(ξn(ω))(φn − φ)dF (φn)

+ξn(ω)
{
− xn(ω) + βE {Vn(ω′)|ω, ω′n 6= M + 1, ξ−n(ω), x(ω)}

}
if ωn 6= M + 1,

− ∫
φe

n<F e−1(ξn(ω))(φ
e
n − φe)dF e (φe

n)

+ξn(ω)
{
− φe − xn(ω) + βE {Vn(ω′)|ω, ω′n 6= M + 1, ξ−n(ω), x(ω)}

}
if ωn = M + 1.

(10)

The number hn(ω, u(ω), Vn) represents the return to firm n in state ω when the firms use
actions u(ω) and firm n’s future returns are described by the value function Vn. The function
hn(·) is called firm n’s return (Denardo 1967, p. 166) or local income function (Whitt 1980,
p. 35).

Enumerate the state space as S = ΩN = {ω1, . . . , ω|S|} and define the |S| × N matrix
V by

V = (V1, . . . , VN ) =




V1(ω1) . . . VN (ω1)
...

...
V1(ω|S|) . . . VN (ω|S|)




and the |S| × (N − 1) matrix V−n by V−n = (V1, . . . , Vn−1, Vn+1, . . . , VN ). Vn represents
the value function of firm n or, more precisely, the value function of incumbent firm n if
ωn 6= M + 1 and the value function of potential entrant n if ωn = M + 1. Define V (ω) =
(V1(ω), . . . , VN (ω)) and V−n(ω) = (V1(ω), . . . , Vn−1(ω), Vn+1(ω), . . . , VN (ω)). Define the
|S| ×N matrices ξ and x similarly. Finally, define the |S| × 2N matrix u by u = (ξ, x). In
what follows we use the terms matrix and function interchangeably.

Equilibrium. Our solution concept is that of stationary Markov perfect equilibrium.
An equilibrium involves value and policy functions V and u such that (i) given u−n, Vn

14Nonstationary strategies are computationally infeasible in infinite-horizon models like ours because they
require computing a different function for each period. Stationarity is also a compelling modeling restriction
whenever nothing in the economic environment depends directly on calendar time.
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solves the Bellman equation (9) for all n and (ii) given u−n(ω) and Vn, un(ω) solves the
maximization problem on the RHS of this equation for all ω and all n. A firm thus behaves
optimally in every state, irrespective of whether this state is on or off the equilibrium
path. Moreover, since the horizon is infinite and the influence of past play is captured
in the current state, there is a one-to-one correspondence between subgames and states.
Hence, any stationary Markov perfect equilibrium is subgame perfect. Note that since a
best reply to stationary Markovian strategies u−n is a stationary Markovian strategy un,
a stationary Markov perfect equilibrium remains a subgame perfect equilibrium even if
nonstationary strategies are considered. Of course, this does not rule out that there may
also exist nonstationary Markov perfect equilibria.

3 Examples

In this section we provide two simple examples to illustrate the key themes of the subsequent
analysis. Our first example demonstrates that if scrap values/setup costs are constant across
firms and periods as in the Ericson & Pakes (1995) model, then a symmetric equilibrium
in pure entry/exit strategies may fail to exist, contrary to their assertion.15 Our second
example shows how to incorporate random scrap values/setup costs in order to ensure that
a symmetric equilibrium in cutoff entry/exit strategies exists.

Example: Deterministic scrap values/setup costs. We set N = 2 and M = 1. This
implies that the industry is either a monopoly (states (1, 2) and (2, 1)) or a duopoly (state
(1, 1)). Moreover, since there is just one “active” state, there is no incentive to invest, so
we set xn(ω) = 0 for all ω and all n in what follows. To simplify things further, we assume
that entry is prohibitively costly and focus entirely on exit. Let π(ω1, ω2) denote firm 1’s
current profit in state ω = (ω1, ω2). We assume that the profit function is symmetric. This
implies that firm 2’s current profit in state ω is π(ω2, ω1). Pick the deterministic scrap value
φ such that

βπ(1, 1)
1− β

< φ <
βπ(1, 2)
1− β

. (11)

Hence, while a monopoly is viable, a duopoly is not. This gives rise to a “war of attrition.”
The sole decision that a firm must make is whether or not to exit the industry. Consider

firm 1. Given firm 2’s exit decision χ(1, 1) ∈ {0, 1}, the Bellman equation defines its value
function:

V (1, 2) = sup
χ̃(1,2)∈{0,1}

π(1, 2) + (1− χ̃(1, 2))φ + χ̃(1, 2)βV (1, 2),

V (1, 1) = sup
χ̃(1,1)∈{0,1}

π(1, 1) + (1− χ̃(1, 1))φ + χ̃(1, 1)β
{

χ(1, 1)V (1, 1) + (1− χ(1, 1))V (1, 2)
}

.

15We defer a formal definition of our symmetry notion to section 6.
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Recall that χ̃(ω) = 1 indicates that firm 1 remains in the industry in state ω and χ̃(ω) = 0
indicates that it exits. The optimal exit decisions χ̃(1, 2) and χ̃(1, 1) of firm 1 satisfy

χ̃ (ω) =

{
1 if φ ≤ φ̄(ω),
0 if φ ≥ φ̄(ω),

where

φ̄(1, 2) = βV (1, 2), (12)

φ̄(1, 1) = β
{

χ(1, 1)V (1, 1) + (1− χ(1, 1))V (1, 2)
}

. (13)

Moreover, in a symmetric equilibrium we must have χ̃(ω1, ω2) = χ(ω2, ω1).
To show that there is no symmetric equilibrium in pure exit strategies, we show that

(χ(1, 2), χ(1, 1)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} leads to a contradiction. Working through
these cases, suppose first that χ(1, 2) = 0. Then V (1, 2) = π(1, 2) + φ and the assumed
optimality of χ(1, 2) = 0 implies

φ ≥ φ̄(1, 2) = β(π(1, 2) + φ) ⇔ φ ≥ βπ(1, 2)
1− β

.

This contradicts assumption (11); therefore no equilibrium with χ(1, 2) = 0 exists. Next
consider χ(1, 1) = 1. Then V (1, 1) = π(1,1)

1−β and the assumed optimality of χ(1, 1) = 1
implies

φ ≤ φ̄(1, 1) =
βπ(1, 1)
1− β

.

This contradicts assumption (11); therefore no equilibrium with χ(1, 1) = 1 exists. This
leaves us with one more possibility: χ(1, 2) = 1 and χ(1, 1) = 0. Here V (1, 2) = π(1,2)

1−β and
the assumed optimality of χ(1, 2) = 1 implies

φ ≥ φ̄(1, 1) =
βπ(1, 2)
1− β

,

which again contradicts assumption (11). Hence, there cannot be a symmetric equilibrium
in pure exit strategies.16

For future reference we note that although there is no symmetric equilibrium in pure
exit strategies there is one in mixed exit strategies given by

V (1, 2) =
π(1, 2)
1− β

, V (1, 1) = π(1, 1) + φ,

ξ(1, 2) = 1, ξ(1, 1) =
(1− β)φ− βπ(1, 2)

β ((1− β)(π(1, 1) + φ)− π(1, 2))
.

16In this particular example there exist two asymmetric equilibria in pure exit strategies. In each of them,
one firm exits in state (1, 1), the other remains in the industry.
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Example: Random scrap values/setup costs. Pakes & McGuire (1994) suggest the
use of random setup costs to overcome convergence problems in their algorithm. Conver-
gence problems may be indicative of nonexistence in pure entry/exit strategies. In the
example above, an algorithm that seeks a (nonexistent) symmetric equilibrium in pure
strategies tends to cycle between prescribing that neither firm should exit from a duopolis-
tic industry and prescribing that both firms should exit.

To restore existence we assume that scrap values are independently and identically
distributed across firms and periods, and that its scrap value is private to itself. We write
firm 1’s scrap value as φ + εθ, where ε > 0 is a constant scale factor that measures the
importance of incomplete information. Overloading notation, we assume that θ ∼ F (·)
with E (θ) = 0. The Bellman equation of firm 1 is

V (1, 2) = sup
ξ̃(1,2)∈[0,1]

π(1, 2) + (1− ξ̃(1, 2))φ + ε

∫

θ>F−1(ξ̃(1,2))
θdF (θ) + ξ̃(1, 2)βV (1, 2),

V (1, 1) = sup
ξ̃(1,1)∈[0,1]

π(1, 1) + (1− ξ̃(1, 1))φ + ε

∫

θ>F−1(ξ̃(1,1))
θdF (θ)

+ξ̃(1, 1)β
{

ξ(1, 1)V (1, 1) + (1− ξ(1, 1))V (1, 2)
}

,

where ξ(1, 1) ∈ [0, 1] is firm 2’s exit decision. The optimal exit decisions of firm 1, ξ̃(1, 2)
and ξ̃(1, 1), are characterized by ξ̃(ω) = F

(
φ̄(ω)−φ

ε

)
, where17

φ̄(1, 2) = βV (1, 2),

φ̄(1, 1) = β
{

ξ(1, 1)V (1, 1) + (1− ξ(1, 1))V (1, 2)
}

.

Moreover, in a symmetric equilibrium we must have ξ̃(ω1, ω2) = ξ(ω2, ω1). This yields a
system of four equations in four unknowns V (1, 2), V (1, 1), ξ(1, 2), and ξ(1, 1).

To facilitate the analysis, let θ be uniformly distributed on the interval [−1, 1].18 This
implies

∫

θ>F−1(ξ(ω))
θdF (θ) =





0 if F−1(ξ(ω)) ≤ −1,
1−F−1(ξ(ω))2

4 if −1 < F−1(ξ(ω)) < 1,

0 if F−1(ξ(ω)) ≥ 1,

where F−1(ξ(ω)) = 2ξ(ω)−1. There are nine cases to be considered, depending on whether
ξ(1, 1) is equal to 0, between 0 and 1, or equal to 1 and on whether ξ(1, 2) is equal to 0,
between 0 and 1, or equal to 1. Table 1 specifies parameters values.

A case-by-case analysis shows that, with random scrap values, there always exists a
unique symmetric equilibrium. If ε > 5, the equilibrium involves 0 < ξ(1, 2) < 1 and

17To see this, note that the first and second derivatives of the RHS of the Bellman equation are given by
d(.)

dξ̃(ω)
= −φ− εF−1(ξ̃(ω)) + φ̄(ω) and d2(.)

dξ̃(ω)2
= −ε 1

F ′(F−1(ξ̃(ω)))
, respectively.

18Besides the uniform distribution many others yield a closed-form expression, including triangular and
Beta distributions.
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parameter π(1, 1) π(1, 2) φ β

value 0 1 15 20
21

Table 1: Parameter values.

ε V (1, 2) V (1, 1) ξ(1, 2) ξ(1, 1)
10 23.817544 21.159671 0.884169 0.784836
5 21 18.044922 1 0.780375
2 21 16.392989 1 0.834562
1 21 15.730888 1 0.854920

0.1 21 15.076219 1 0.873034
0.01 21 15.007653 1 0.874804

0.001 21 15.000766 1 0.874980
10−6 21 15.000001 1 0.875000

Table 2: Equilibrium with random scrap values.

0 < ξ(1, 1) < 1, and if ε ≤ 5, it involves ξ(1, 2) = 1 and 0 < ξ(1, 1) < 1. Table 2
describes the equilibrium for various values of ε. Given the parameter values in Table 1, the
symmetric equilibrium in mixed strategies of the game of complete information is V (1, 2) =
21, V (1, 1) = 15, ξ(1, 2) = 1, and ξ(1, 1) = 7

8 = 0.875. As Table 2 shows, the equilibrium
with random scrap values converges to the equilibrium in mixed strategies as ε approaches
zero. In sections 4 and 7, we show that existence and convergence are general properties of
the game of incomplete information.

4 Existence

In this section we show how incorporating firm heterogeneity in the form of random scrap
values/setup costs into the Ericson & Pakes (1995) model guarantees the existence of an
equilibrium. We specifically establish the existence of a possibly asymmetric equilibrium.
The proof extends Whitt (1980) to our setting. In fact, for the most part, it is a reassembly
of his argument and some general results on dynamic programming due to Denardo (1967).
Both papers use models that are sufficiently abstract to enable us to construct the bulk
of the existence proof by citing their intermediate results. In developing our argument, we
assume that firm n’s investment problem always has a unique solution in order to guarantee
that the equilibrium is in pure investment strategies. We state this assumption in terms of
the local income function hn(·). We then devote section 5 to providing a sufficient condition
in terms of the model’s primitives for this assumption to hold.

We begin with a series of assumptions. The first one ensures that the model’s primitives
are bounded.

Assumption 1 (i) The state space is finite, i.e., N < ∞ and M < ∞. (ii) Profits are
bounded, i.e., there exists π̄ < ∞ such that −π̄ < πn(ω) < π̄ for all ω and all n. (iii)
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Investments are bounded, i.e., x̄ < ∞ and x̄e < ∞. (iv) Scrap values and setup costs are
drawn from distributions F (·) and F e(·) that have both positive densities over connected
supports and their expectations exist, i.e., there exist φ̄ < ∞ and φ̄

e
< ∞ such that −φ̄ <∫ |φn|dF (φn) < φ̄ and −φ̄

e
<

∫ |φe
n|dF e (φe

n) < φ̄
e. (v) Firms discount future payoffs, i.e.,

β ∈ [0, 1).

The assumption in part (iii) is without loss of generality because the upper bounds x̄ and
x̄e can always be chosen large enough to never constrain firms’ optimal investment choices.
Specifically, the best possible net present value of the current and future cash flows that any
firm, be it an incumbent or an entrant, can realize is no greater than V̄ ∗ = φ̄

e+ π̄
1−β +φ̄, which

is the sum of a bound on its entry subsidy (i.e., negative setup cost), the capitalized value
of remaining in the best possible state forever, and a bound on its scrap value. Conversely,
because a firm always has the option of investing zero, it can guarantee that the net present
value of its current and future cash flows is no worse than −V̄ ∗. Since no firm is ever willing
to invest more than β

(
V̄ ∗ − (−V̄ ∗)

)
= 2βV̄ ∗ in order to reap the best instead of the worst

possible net present value, upper bounds on investment in excess of 2βV̄ ∗ never constrain
firms’ optimal choices.

The assumption in part (iv) admits distributions F (·) and F e(·) with either bounded
or unbounded support. From a theorist’s perspective it is natural to assume bounded
supports because unbounded supports essentially stipulate that some agent is willing to
pay an arbitrarily large amount to acquire the assets of a firm that makes bounded profits
from product market competition. From an empiricist’s perspective, unbounded supports
(as assumed by Aguirregabiria & Mira (2007) and Pesendorfer & Schmidt-Dengler (2008))
may be attractive because they guarantee that in the data there cannot be an observation
that has zero probability of occurring.

Next we assume continuity of the transition function P (·). Similar continuity assump-
tions are commonplace in the literature on dynamic stochastic games (see Mertens 2002).

Assumption 2 P (ω′, ω, χ(ω, φ), x(ω)) is a continuous function of x(ω) for all ω′, ω, and
all χ(ω, φ).

Observe from equation (10) that current profit is additively separable from investment.
The continuity of the transition function P (·) in x(ω) therefore ensures the continuity of
the local income function hn(·) in x(ω). In addition, hn(·) is continuous in ξ(ω) because,
analogous to equation (1), firm n integrates out over all possible realization of its rivals’ exit
and entry decisions χ−n(ω, φ−n) to obtain the probability that the industry transits from
state ω to state ω′. Observe further that hn(·) is always continuous in Vn because Vn enters
hn(·) in equation (10) via the expected value of firm n’s future cash flows, E {Vn(ω′)|·}. We
record these observations for later use.

Proposition 1 Under assumption 2, hn(ω, u(ω), Vn) is a continuous function of u(ω) and
Vn for all ω and all n.
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Due to the random scrap values/setup costs, our model is formally a dynamic stochastic
game with a finite state space and a continuum of actions given by the probability that
an incumbent firm remains in the industry/a potential entrant enters the industry and the
set of feasible investment choices. Under assumptions 1 and 2, standard arguments (e.g.,
Federgruen 1978, Whitt 1980) yield the existence of an equilibrium in mixed strategies.
However, mixed strategies over continuous actions are infeasible to compute. To guaran-
tee the existence of an equilibrium in pure investment strategies, we make the additional
assumption that firm n’s investment problem always has a unique solution.

Assumption 3 A unique xn(ω) exists that attains the maximum of hn(ω, 1, xn(ω), u−n(ω), Vn)
for all u−n(ω), Vn, ω, and all n.19

In section 5 we provide a sufficient condition for assumption 3 to hold in terms of the model’s
primitives. Specifically, we define UIC admissibility of the transition function P (·) and
prove that this condition ensures uniqueness of investment choice. Therefore assumption
3 holds and an equilibrium that is amenable to computation exists. Constructing our
argument in this modular form makes it simple and transparent for other researchers to
insert alternative sufficient conditions for uniqueness of investment choice into our proof
and immediately obtain existence.

Recall that we assume entry and exit decisions are implemented before investment de-
cisions are carried out. Thus, firm n chooses xn(ω) to maximize hn(ω, 1, xn(ω), u−n(ω), Vn)
in accordance with equations (3) and (6), and the resulting investment choice also maxi-
mizes hn(ω, ξn(ω), xn(ω), u−n(ω), Vn) for all ξn(ω) > 0, u−n(ω), Vn, ω, and all n. Clearly
any investment would be optimal whenever an incumbent firm exits for sure or a po-
tential entrant stays out for sure. Consequently, we adopt the following convention: if
ξn(ω) = 0, then we take xn(ω) to have the value alluded to in assumption 3. It follows
that hn(ω, ξn(ω), xn(ω), u−n(ω), Vn) attains its maximum for a unique value of xn(ω) inde-
pendent of the value of ξn(ω). This is a natural convention because if there were even the
slightest chance that firm n would remain in the industry although it sets ξn(ω) = 0, then
the firm would want to choose this value of xn(ω) as its investment.

The above assumptions ensure existence of an equilibrium.

Proposition 2 Under assumptions 1, 2, and 3, an equilibrium exists in cutoff entry/exit
and pure investment strategies.

The proof is based on the following idea.20 Fix strategies u−n and consider firm n’s
problem. Since its competitors’ strategies are fixed, firm n has to solve a decision problem
(as opposed to a game problem). We can thus employ dynamic programming techniques

19Assumption 3 can be weakened to hold for all possible maximal return functions V ∗
n,u−n

∈ [−V̄ ∗, V̄ ∗]|S|.
20Given that standard arguments establish the existence of an equilibrium in mixed strategies, it actually

suffices to show that a firm is never willing to mix. The reason that we start from first principles is that we
need the machinery from the proof of proposition 2 for the proofs of propositions 3, 5, and 6.
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to analyze the firm’s problem. In particular, a contraction mapping argument establishes
that the firm’s best reply to its competitors’ strategies is well-defined. It remains to show
that there exists a fixed point in the firms’ best-reply correspondences.

Before stating the proof of proposition 2, we introduce and discuss a number of con-
structs. We start with the decision problem. Let Vn denote the space of bounded |S| × 1
vectors endowed with the sup norm. Fix u−n ∈ U−n and define the maximal return operator
H∗

n,u−n
: Vn → Vn pointwise by

(H∗
n,u−n

Vn)(ω) = sup
ũn(ω)∈Un(ω)

hn(ω, ũn(ω), u−n(ω), Vn).

The number (H∗
u−n

Vn)(ω) represents the return to firm n in state ω when firm n chooses
its optimal action while the other firms use actions u−n(ω) and firm n’s future returns are
described by Vn. Note that the RHS of the above equation coincides with the RHS of the
Bellman equation (9).

Since profits and investments are bounded and the expectations of scrap values and
setup costs exist by assumption 1, H∗

n,u−n
takes bounded vectors into bounded vectors.

Application of Blackwell’s sufficient conditions (theorem 5 of Blackwell (1965); see also
theorem 3.3 on p. 54 of Stokey & Lucas (1989)) shows that H∗

n,u−n
is a contraction with

modulus β: First, inspection of equation (10) shows that Vn(ω) ≥ V̂n(ω) for all ω implies
(H∗

n,u−nVn)(ω) ≥ (H∗
n,u−n

V̂n)(ω) for all ω (“monotonicity”). Second, given a constant c ≥ 0,(
H∗

n,u−n(Vn + c)
)
(ω) ≤ (H∗

n,u−nVn)(ω) + βc for all ω (“discounting”).
Since H∗

n,u−n
is a contraction, the contraction mapping theorem (see theorem 3.2. on p.

50 of Stokey & Lucas (1989)) implies that there exists a unique V ∗
n,u−n

∈ Vn that satisfies
V ∗

n,u−n
= H∗

n,u−n
V ∗

n,u−n
or, equivalently,

V ∗
n,u−n

(ω) = sup
ũn(ω)∈Un(ω)

hn(ω, ũn(ω), u−n(ω), V ∗
n,u−n

) (14)

for all ω. The fixed point V ∗
n,u−n

of H∗
n,u−n

is called the maximal return function given
policies u−n; it should be thought of as a mapping from U−n into Vn. Clearly, given u−n,
the maximal return function V ∗

n,u−n
solves the Bellman equation (9); it plays a major role

in our existence proof.
Before proceeding to the existence proof, we introduce and discuss another operator.

Fix u ∈ U and define the return operator Hn,u : Vn → Vn pointwise by

(Hn,uVn)(ω) = hn(ω, u(ω), Vn).

The number (HuVn)(ω) represents the return to firm n in state ω when the firms use actions
u(ω) and Vn describes firm n’s future returns. Like H∗

n,u−n
, Hn,u is a contraction with

modulus β that takes bounded vectors into bounded vectors. Hence, a unique Vn,u ∈ Vn
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exists that satisfies Vn,u = Hn,uVn,u, i.e.,

Vn,u(ω) = hn(ω, u(ω), Vn,u) (15)

for all ω. The fixed point Vn,u of Hn,u is called the return function given policies u; it should
be thought of as a mapping from U into Vn.

The return function Vn,u and the maximal return function V ∗
n,u−n

are tightly connected.
Because the return operator Hn,u is monotonic (meaning that Vn(ω) ≥ V̂n(ω) for all ω

implies (Hn,uVn)(ω) ≥ (Hn,uV̂n)(ω) for all ω), theorem 3 of Denardo (1967) establishes that

V ∗
n,u−n

(ω) = sup
ũn∈Un

Vn,ũn,u−n(ω) (16)

for all ω, where Vn,ũn,u−n is the fixed point of the return operator given policy (ũn, u−n).
With this machinery in place, we turn to the game problem. Consider the mapping

Υn : U−n → Un defined by

Υn(u−n) =

{
ũn ∈ Un : ũn(ω) ∈ arg sup

ũn(ω)∈Un(ω)
hn(ω, ũn(ω), u−n(ω), V ∗

n,u−n
) for all ω

}
.

(17)
Υn(·) is the best-reply correspondence of firm n and Υn(u−n) is the set of best replies of
firm n given rivals’ policies u−n. Consider further the mapping Υ : U → U obtained by
stacking these best-reply correspondences. Υ(u) = (Υ1(u−1), . . . ,ΥN (u−N )) is the set of
best replies of firm 1 given rivals’ policies u−1, those of firm 2 given rivals’ policies u−2, etc.
An equilibrium exists if there is a u ∈ U such that u ∈ Υ(u). To show that such a u exists,
we show that Υ(·) is, in fact, a continuous function to which Brouwer’s fixed point theorem
applies.

Proof of proposition 2. We begin by establishing that Υ(·) is non-empty and
upper hemi-continuous. Given policies u−n, firm n’s maximal return function V ∗

n,u−n
is

well-defined due to assumption 1 as shown above. Fix ω. Proposition 1 states that firm
n’s local income function hn(ω, u(ω), Vn) is continuous in u(ω) and Vn. The maximand,
hn(ω, un(ω), u−n(ω), V ∗

n,u−n
), in the definition of Υn (·) in equation (17) is therefore con-

tinuous in un(ω) and u−n if firm n’s maximal return function V ∗
n,u−n

is continuous in u−n.
That this is so is established through appeal to two lemmas by Whitt (1980).

His lemma 3.2 states that if Hn,uVn is continuous in u for all Vn, then the return function
Vn,u is continuous in u.21 This establishes that Vn,u is a continuous function of u. His lemma
3.1 states that if Un (ω), firm n’s set of feasible actions in state ω, is a compact metric space
for all ω, if the state space S is countable, and if the return function Vn,u is continuous in u,
then supũn∈Un

Vn,ũn,u−n (ω) is continuous in u−n for all ω. These requirements are satisfied.

21It is immediate to verify that the return operator Hn,u satisfies the boundedness, monotonicity, and
contraction assumptions in Whitt (1980). Whitt (1980) denotes the return function Vn,u by vδ(·, i) and the
maximal return function V ∗

n,u−n
by fδ(·, i). We set Wn = Vn to obtain a special case of his lemma 3.2.
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Equation (16) thus implies that V ∗
n,u−n

(ω) is continuous in u−n for all ω. This, of course,
implies that firm n’s maximal return function V ∗

n,u−n
is continuous in u−n.

Since hn(ω, un(ω), u−n(ω), V ∗
n,u−n

) is continuous in un(ω) and u−n and Un(ω) is compact
and independent of u−n, the theorem of the maximum (see theorem 3.6 on p. 62 of Stokey
& Lucas (1989)) implies that arg supũn(ω)∈Un(ω) hn(ω, ũn(ω), u−n(ω), V ∗

n,u−n
) is non-empty

and upper hemi-continuous in u−n. Since ω was arbitrary, this establishes that Υn(·) is a
non-empty and upper hemi-continuous correspondence that maps U−n into Un. Hence, Υ(·)
is a non-empty and upper hemi-continuous correspondence that maps U into U .

We next show that Υ(·) is single-valued. Recall that, given policies u−n, firm n’s maximal
return function V ∗

n,u−n
is well-defined and consider firm n’s best reply in state ω. Uniqueness

of the investment choice follows from assumption 3 and our convention covering the special
case of ξn(ω) = 0. This, in turn, implies that equations (3) and (6) give unique exit and
entry cutoffs, φ̄n(ω) and φ̄

e
n(ω). Given that these cutoffs are unique, the corresponding exit

and entry probabilities, ξn(ω) = F (φ̄n(ω)) (if ωn 6= M + 1) and ξn(ω) = F e(φ̄e
n(ω)) (if

ωn = M + 1), must be unique. Since ω was arbitrary, this establishes that Υn(·) and hence
Υ(·) is single-valued.

Since Υ(·) is non-empty, single-valued, and upper hemi-continuous, it is, in fact, a con-
tinuous function that maps the non-empty, convex, and compact set U into itself. Brouwer’s
fixed point theorem therefore applies: a u ∈ U exists such that u ∈ Υ(u).

5 A Sufficient Condition for Pure Investment Strategies

Assumption 3 requires that the local income function hn(ω, 1, xn(ω), u−n(ω), Vn) is maxi-
mized at a unique investment choice xn(ω) for all u−n(ω), Vn, ω, and all n. Fortunately, a
judicious choice of transition probabilities guarantees that the investment choice is indeed
unique. In this section, we first define unique investment choice (UIC) admissibility of the
transition function P (·) and show in proposition 3 that if this condition on the model’s
primitives is satisfied, then assumption 3 holds. We then provide a series of examples of
transition functions that are UIC admissible and provide a reasonable amount of flexibility.

Condition 1 The transition function P (·) is unique investment choice (UIC) admissible
if, for all χ−n(ω, φ−n), x(ω), ω′, ω, and all n, the probability P (ω′, ω, 1, χ−n(ω, φ−n), x(ω))
that the industry moves from state ω to state ω′ given that firm n remains in the industry
(or enters the industry if firm n is an entrant rather than an incumbent) can be written in
a separable form as

Kn

(
ω′, ω, χ−n

(
ω, φ−n

)
, x−n(ω)

)
Qn(ω, xn (ω)) + Ln

(
ω′, ω, χ−n

(
ω, φ−n

)
, x−n(ω)

)
, (18)

where Qn(ω, x (ω)) is twice differentiable, strictly increasing, and strictly concave in xn(ω),
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i.e.,
d

dxn(ω)
Qn(ω, xn (ω)) > 0,

d2

dxn(ω)2
Qn(ω, xn (ω)) < 0 (19)

for all xn(ω) ∈ [0, x̄] (or xn(ω) ∈ [0, x̄e] if firm n is an entrant rather than an incumbent).22

UIC admissibility ensures that firm n’s local income function hn(. . . , 1, xn(ω), . . .) either
is strictly concave—and therefore has a unique maximizer—in the interval [0, x̄] (or in the
interval [0, x̄e] if firm n is an entrant rather than an incumbent) or that the unique maximizer
is a corner solution. This establishes

Proposition 3 If the transition function P (·) is UIC admissible (condition 1), then as-
sumption 3 holds.

Proof. Since the proof for a potential entrant is the same with x̄e replacing x̄, we focus
on the investment problem of an incumbent firm in what follows. UIC admissibility ensures
that the expected value of firm n’s future cash flow, E {Vn(ω′)|ω, ω′n 6= M +1, ξ−n(ω), x(ω)},
in its local income function hn(. . . , 1, xn(ω), . . .) can be written in a separable form as

An(ω, u−n(ω), Vn)Qn(ω, xn(ω)) + Bn(ω, u−n(ω), Vn). (20)

To see this, recall from equation (1) that firm n has to “integrate out” over all possible
realizations of its rivals’ exit and entry decisions to obtain the probability that the industry
moves from state ω to state ω′. Hence,

∑

ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

P (ω′, ω, 1, ι−n, x(ω))
∏

k 6=n

ξk(ω)ιk(1− ξk(ω))1−ιk

=
∑

ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

[
Kn

(
ω′, ω, ι−n, x−n(ω)

)
Qn(ω, xn (ω)) + Ln

(
ω′, ω, ι−n, x−n(ω)

) ]

×
∏

k 6=n

ξk(ω)ιk(1− ξk(ω))1−ιk

=

[ ∑

ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

Kn

(
ω′, ω, ι−n, x−n(ω)

) ∏

k 6=n

ξk(ω)ιk(1− ξk(ω))1−ιk

]

︸ ︷︷ ︸
An(ω,u−n(ω),Vn)

Qn(ω, xn(ω))

+

[ ∑

ω′∈S

Vn(ω′)
∑

ι−n∈{0,1}N−1

Ln

(
ω′, ω, ι−n, x−n(ω)

) ∏

k 6=n

ξk(ω)ιk(1− ξk(ω))1−ιk

]

︸ ︷︷ ︸
Bn(ω,u−n(ω),Vn)

where the first equality uses the separability condition (18).
22Condition 1 can be generalized to allow for Q(·) to depend on x−n(ω).
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ω′2 = ω2 + 1 ω′2 = ω2 ω′2 = ω2 − 1

ω′1 = ω1 + 1 (1− δ)p1(1− δ)p2 (1− δ)p1[δp2 + (1− δ)(1− p2)] (1− δ)p1δp2

ω′1 = ω1
[δp1 + (1− δ)(1− p1)]

×(1− δ)p2

[δp1 + (1− δ)(1− p1)]
×[δp2 + (1− δ)(1− p2)]

[δp1 + (1− δ)(1− p1)]
×δp2

ω′1 = ω1 − 1 δ(1− p1)(1− δ)p2 δ(1− p1)[δp2 + (1− δ)(1− p2)] δ(1− p1)δp2

Table 3: Transition probabilities. Independent transitions to immediately adjacent states.

Next we differentiate hn(. . . , 1, xn(ω), . . .) with respect to xn(ω). By virtue of equation
(20), the FOC for an unconstrained solution to firm n’s investment problem is

−1 + βAn(ω, u−n(ω), Vn)
d

dxn(ω)
Qn(ω, xn (ω)) = 0.

There are two cases to consider. First suppose that An(ω, u−n(ω), Vn) > 0. If there
exists a solution to the FOC in [0, x̄], say x̂n(ω), then it must be unique because the
objective function is strictly concave on [0, x̄] in light of the derivative condition (19).
Hence, xn(ω) = x̂n(ω) is the unique maximizer. If there does not exist a solution to the
FOC in [0, x̄], then the objective function is either strictly decreasing or strictly increasing
on [0, x̄]. In the former case the unique maximizer is xn(ω) = 0 and in the latter case it is
xn(ω) = x̄.

Next suppose that An(ω, u−n(ω), Vn) ≤ 0. The objective function is strictly decreasing.
Hence, the unique maximizer is xn(ω) = 0.

UIC admissibility allows for much more flexibility in the transition probabilities than
the simple schemes seen in the extant literature where each firm is restricted to each period
move up one state, stay the same, or drop down one state. We demonstrate this with a
series of increasingly complex examples all involving an industry with N = 2 firms, M ≥ 3
“active” states, and no entry and exit.

Example: Independent transitions to immediately adjacent states. Consider a
game of capacity accumulation similar to that in Besanko & Doraszelski (2004). A firm’s
state describes its capacity. In each period, the firm decides how much to spend on an
investment project in order to add to its capacity. If firm n invests xn(ω) ≥ 0, then the
probability that its investment project succeeds is

pn =
αxn(ω)

1 + αxn(ω)
,

where the parameter α > 0 measures the effectiveness of investment. Depreciation tends to
offset investment, and we assume that each firm is independently hit by a depreciation shock
with probability δ. The transition probabilities at an interior state ω ∈ {2, . . . , M − 1}2 are
given in Table 3.

25



www.manaraa.com

ω′2 = ω2 + 1 ω′2 = ω2 ω′2 = ω2 − 1

ω′1 = ω1 + 1 (1− δ) p1p2 (1− δ) p1 (1− p2) 0

ω′1 = ω1 (1− δ) (1− p1) p2 (1− δ) (1− p1) (1− p2) + δp1p2 δp1 (1− p2)

ω′1 = ω1 − 1 0 δ (1− p1) p2 δ (1− p1) (1− p2)

Table 4: Transition probabilities. Dependent transitions to immediately adjacent states.

Without loss of generality, consider firm 1. The probability of remaining in state ω can
be written as

[δp1 + (1− δ)(1− p1)][δp2 + (1− δ)(1− p2)]

= [2δ − 1][δp2 + (1− δ)(1− p2)]︸ ︷︷ ︸
K1(ω,ω,x2(ω))

p1︸︷︷︸
Q1(ω,x1(ω))

+ [1− δ][δp2 + (1− δ)(1− p2)]︸ ︷︷ ︸
L1(ω,ω,x2(ω))

.

This expression satisfies the separability condition (18), as do the corresponding expressions
for the probabilities of moving to some other state ω′ 6= ω. In addition, the derivative
condition (19) is satisfied because

d

dx1(ω)
Q1(ω, x1(ω)) =

α

(1 + αx1(ω))2
> 0,

d2

dx1(ω)2
Q1(ω, x1(ω)) = − 2α2

(1 + αx1(ω))3
< 0.

Example: Dependent transitions to immediately adjacent states. Next we intro-
duce correlation into firms’ transitions by replacing the firm-specific depreciation shocks of
the above example by an industry-wide depreciation shock (e.g., Pakes & McGuire 1994).
Decompose, for purposes of exposition, the transition of each firm into two stages. In the
first stage the probability that firm n’s state increases by one is again given by pn. In the
second stage a depreciation shock reduces the states of all firms by one with probability δ.
The transition probabilities at an interior state ω ∈ {2, . . . , M − 1}2 are given in Table 4.

For the sake of brevity, we just spell out the probability of remaining in state ω,

(1− δ)(1− p1)(1− p2) + δp1p2 = [δ − 1 + p2]︸ ︷︷ ︸
K1(ω,ω,x2(ω))

p1︸︷︷︸
Q1(ω,x1(ω))

+ [(1− δ)(1− p2)]︸ ︷︷ ︸
L1(ω,ω,x2(ω))

,

and note that conditions (18) and (19) are again both satisfied.

Example: Dependent transitions to arbitrary states. Using the above two-stage
decomposition much more flexible transitions can be constructed. In the first stage firm n’s
investment xn(ω) determines a set of transition probabilities to all possible “active” states.
For example, the probability that firm n moves from its initial state ωn to the intermediate
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state ω̂n ∈ {1, . . . ,M} may be





ζn,ωn,1 + ηn,ωn,1 pn if ω̂n = 1,
...

...
...

ζn,ωn,ωn−1 + ηn,ωn,ωn−1 pn if ω̂n = ωn − 1,

ζn,ωn,ωn
+ ηn,ωn,ωn

pn if ω̂n = ωn,

ζn,ωn,ωn+1 + ηn,ωn,ωn+1 pn if ω̂n = ωn + 1,
...

...
...

ζn,ωn,M + ηn,ωn,M pn if ω̂n = M,

where xn(ω) affects the probability of a transition from state ωn to state ω̂n either positively
of negatively depending on the sign of ηn,ωn,ω̂n

.23 In the second stage, the industry transits
from its intermediate state ω̂ to its final state ω′ according to some arbitrary, exogenously
given probabilities that may depend on ω̂.

Clearly, pn does not have to equal αxn(ω)
1+αxn(ω) ; it can be of any form that satisfies the

derivative condition (19). For example, let

pn = 1− e−αxn(ω),

where α > 0. As another example, let

pn =
arctan

(
2α1xn(ω)+α2√

4−α2
2

)
− arctan

(
α2√
4−α2

2

)

π
2 − arctan

(
α2√
4−α2

2

) ,

where α1 > 0 and 0 ≤ α2 < 2. Then pn is increasing in α1 (just as αxn(ω)
1+αxn(ω) and 1− eαxn(ω)

are increasing in α) and increasing (decreasing) in α2 to the left (right) of xn(ω) = 1
α1

. That
is, while increasing α1 makes investments of all sizes more effective, increasing α2 makes
small investments more and large ones less effective. In addition, xn(ω) = 1

α1
implies pn = 1

2 .
Hence, increasing α2 preserves the median but increases the spread of pn as measured, e.g.,
by the inter-quartile range.

UIC admissibility is a sufficient condition and, if it fails, uniqueness of investment choice
can often be achieved by other means. Purification is again a very valuable tool. In particu-
lar, a part of the subsequent literature has assumed that the cost of investment is randomly
drawn and privately known. Ryan (2006) and Besanko, Doraszelski, Lu & Satterthwaite
(2010) extend our handling of entry and exit to the case of discrete (or “lumpy”) invest-
ment. Their models remains computationally tractable because the equilibrium is in cutoff

23The parameters ζn,ωn,ω̂n
and ηn,ωn,ω̂n

must be chosen to ensure that the probabilities stay in the

unit interval for all xn(ω) ∈ [0, x̄] and sum to one. In particular, this requires
∑M

ω̂n=1 ζn,ωn,ω̂n
= 1 and∑M

ω̂n=1 ηn,ωn,ω̂n
= 0.
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investment strategies. Focusing on the case of continuous investment, Jenkins, Liu, Matzkin
& McFadden (2004) restrict the functional form of per-period payoffs to ensure that a firm’s
optimal investment level is almost always unique given a realization of the cost of investment
(see their assumption 4 and theorem 2 in appendix 1). Again its rivals perceive the firm
as if it was following a mixed strategy, thereby facilitating the existence of an equilibrium,
although computing these perceptions—as one must in order to determine the rivals’ best
replies to them—becomes somewhat more involved.

6 Symmetry

In section 4 we established the existence of a possibly asymmetric equilibrium. We now show
that if the model’s primitives satisfy an additional symmetry assumption, then a symmetric
equilibrium exists.

Informally the notion of symmetry in Ericson & Pakes (1995) is this: Consider an
industry with five firms and suppose that when firm 2 is in state 3 and the other four firms
are in states 1, 3, 3, and 6, then it invests 50. Symmetry means that when firm 4 is in
state 3 and the other four firms are in states 1, 3, 3, and 6, then it also invests 50. Thus,
in a symmetric equilibrium, a firm’s policy is a common function of its own state and the
distribution of its rivals’ states.

To formalize this notion of symmetry, let κ = (κ1, . . . , κN ) be a permutation of (1, . . . , N).
The policy functions u = (u1, . . . , uN ) are symmetric if

un(ωκ1 , . . . , ωκn−1 , ωκn , ωκn+1 , . . . ωκN ) = uκn(ω1, . . . , ωn−1, ωn, ωn+1, . . . ωN ) (21)

for all ω, n, and all κ. We say that an equilibrium is symmetric if its policy functions are
symmetric. Moreover, in a symmetric equilibrium the value functions V = (V1, . . . , VN ) are
symmetric and satisfy the analog of equation (21).

This definition implies two key properties that capture the essence of symmetry:

1. If the states of two firms are the same, then their actions must be the same. For
example, if ω = (2, 3, 3), then set κ = (2, 3, 1) in equation (21) to obtain u2(3, 3, 2) =
u2(ω2, ω3, ω1) = u3(ω1, ω2, ω3) = u3(2, 3, 3).

2. A firm does not care about the identity of its rivals; hence, the firm’s action must be the
same after its rivals’ exchange states. For example, if ω = (2, 3, 4), then set κ = (3, 2, 1)
in equation (21) to obtain u2(4, 3, 2) = u2(ω3, ω2, ω1) = u3(ω1, ω2, ω3) = u2(2, 3, 4).

Inspection shows that these properties imply the notion of symmetry in Ericson & Pakes
(1995): A firm’s policy is a common function of its own state and the distribution of its
rivals’ states.

One of the reasons symmetry is important is that it eases the computational burden
considerably. Instead of having to compute value and policy functions for all firms, under
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symmetry it suffices to compute value and policy functions for one firm, say firm 1. To see
this, let κ = (n, 2, . . . , n− 1, 1, n + 1, . . . , N) in equation (21) to obtain

un(ωn, ω2, . . . , ωn−1, ω1, ωn+1, . . . , ωN ) = u1(ω1, ω2, . . . , ωn−1, ωn, ωn+1, . . . , ωN ), (22)

and similarly for the value function. That is, the value and policy of firm n is the same as
the value and policy of firm 1 had their states been interchanged. In addition, symmetry
reduces the size of the state space on which the value and policy functions of firm 1 are
defined because firm 1 does not care about the identity of its competitors. To see this, let
n = 1 and κ = (1, 2, . . . , k − 1, l, k + 1, . . . , l − 1, k, l + 1, . . . , N) with k ≥ 2 and l ≥ 2 in
equation (21) to obtain

u1(ω1, ω2, . . . , ωl, . . . , ωk, . . . , ωN ) = u1(ω1, ω2, . . . , ωk, . . . , ωl, . . . , ωN ), (23)

and similarly for the value function. That is, only the firm’s own state and the distribution
of rivals’ states matters. This latter property is commonly referred to as anonymity or as
exchangeability.24

We are now ready to state our symmetry assumption.

Assumption 4 The local income functions are symmetric, i.e.,

hn(ωκ1 , . . . , ωκN , uκ1(ω), . . . , uκN (ω), Vn) = hκn(ω1, . . . , ωN , u1(ω), . . . , uN (ω), Vκn) (24)

for all u(ω), symmetric V , ω, n and all κ.

Note that the value functions that enter the local income functions are themselves symmet-
ric.

Some further explanation may be helpful. A permutation κ shuffles firms’ states, actions,
and value functions in a way that preserves the values of their local income functions
according to the principle that identical actions in identical situations yield identical payoffs.
Let n = 2 and κ = (2, 3, 1) in equation (24) to obtain

h2(ω2, ω3, ω1, u2(ω), u3(ω), u1(ω), V2) = h3(ω1, ω2, ω3, u1(ω), u2(ω), u3(ω), V3).

On the left-hand side firm 2 is in state ω3 and takes action u3(ω) while it faces two rivals,
one in state ω1 and one in state ω2. On the right-hand side firm 3 is in state ω3 and takes
action u3(ω) while it faces two rivals, one in states ω1 and one in state ω2. Since the state
of firm 2 on the left-hand side is that of firm 3 on the right-hand side and the distribution
over states and actions of firm 2’s rivals on the left-hand side is that of firm 3’s rivals on
the right-hand side, their respective situations are identical.

24Equations (22) and (23) are often together taken as the definition of symmetry (e.g., Doraszelski &
Pakes 2007). It is easy to see that they are equivalent to our notion of symmetry in equation (21). Working
with equation (21) instead of equations (22) and (23) simplifies the notation in the remainder of this section.
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While we have stated assumption 4 in terms of the local income functions to facilitate
the adaptation of our existence proof to other models, it is readily tied to the model’s
primitives.

Condition 2 The model’s primitives are symmetric if (i) the profit functions are symmet-
ric, i.e.,

πn(ωκ1 , . . . , ωκN ) = πκn(ω1, . . . , ωN )

for all ω, n and all κ and (ii) the transition function is symmetric, i.e.,

P (ω′κ1
, . . . , ω′κN

, ωκ1 , . . . , ωκN , χκ1
(ω, φκ1

), . . . , χκN
(ω, φκN

), xκ1(ω), . . . , xκN (ω))

= P (ω′1, . . . , ω
′
N , ω1, . . . , ωN , χ1(ω, φ1), . . . , χN (ω, φN ), x1(ω), . . . , xN (ω))

for all χ(ω, φ), x(ω), ω′, ω and all κ.

Proposition 4 If the model’s primitives are symmetric (condition 2), then assumption 4
holds.

The proof of proposition 4 is straightforward but tedious and therefore omitted. Note
that in the special case of independent transitions, part (ii) of condition 2 is satisfied
whenever the factors Pn(·) of the transition function P (·) are the same across firms, i.e.,
Pn(ω′n, ωn, χn(ω, φn), xn(ω)) = P1(ω′n, ωn, χn(ω, φn), xn(ω)) for all n.

Together with assumptions 1, 2, and 3 in section 4, assumption 4 ensures existence of a
symmetric equilibrium.

Proposition 5 Under assumptions 1, 2, 3, and 4, a symmetric equilibrium exists in cutoff
entry/exit and pure investment strategies.

The idea of the proof is as follows. Symmetry allows us to restrict attention to the
best-reply correspondence of firm 1. To enforce the anonymity that symmetry implies we
redefine the state space employing Ericson & Pakes’s (1995) notion that symmetry means
each firm’s investment is a common function of its own state and the distribution of its
rivals’ states. This reduced state space makes it impossible for firm 1 to tailor its policy to
the identity of its competitors. An argument analogous to the proof of proposition 2 shows
that there exists a fixed point to the best-reply correspondence of firm 1. We use this fixed
point to construct a candidate equilibrium by specifying symmetric policies for all firms.
The associated value functions are also symmetric. Finally, to complete the argument, we
exploit the symmetry of the local income functions to show that no firm has an incentive
to deviate from the candidate equilibrium.

In preparation for proving proposition 5 we introduce the necessary notation to construct
the candidate equilibrium. To understand our notation, it is helpful to keep in mind that
the candidate equilibrium will be symmetric. We begin with defining the reduced state
space. Consider firm n and state ω. Define σn = (σn,1, . . . , σn,M , σn,M+1), where σn,m
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denotes the number of competitors of firm n that are in state m (excluding firm n), and
Σ =

{
σn ∈ {0, 1, . . . , N − 1}M+1|∑M+1

m=1 σn,m = N − 1
}

to be the set of values that σn can

take on. Rewrite ω as (ωn, σn). Let S◦ = Ω×Σ denote the reduced state space and S = ΩN

the full state space. Define a function τn : S → S◦ such that τn(ω) = (ωn, σn); it maps
the full to the reduced state space. For example, if N = 4, M = 3, and ω = (3, 2, 2, 4),
then (ω1, σ1) = τ1(ω) = (3, 0, 2, 0, 1) and (ω3, σ3) = τ3(ω) = (2, 0, 1, 1, 1). Note that no
information is lost in going from the full to the reduced state space provided that the
equilibrium is symmetric. In particular, τ1(ω) contains all the information in ω that is
required to evaluate the value and policy functions of firm 1. Note also that in general
the reduced state space is considerably smaller than the full state space: it has just |S◦| =
(M + 1)

(
M+N−1

N−1

)
< (M + 1)N = |S| states.25

Define the inverse function τ−1
n : S◦ → S such that ω = τ−1

n (ωn, σn) is a fixed selection
from the set {ω|(ωn, σn) = τn(ω)}. We adopt the convention that ω = τ−1

n (ωn, σn) satisfies
ω1 ≤ ω2 ≤ . . . ≤ ωn−1 ≤ ωn+1 ≤ . . . ≤ ωN . Observe that, if ω̂ = τ−1

n (τn(ω)), then
ω̂ is obtained from ω by rearranging the elements of ω−n. For example, (3, 2, 2, 5) =
τ−1

1 (τ1(3, 2, 5, 2)), (2, 2, 3, 5) = τ−1
2 (τ2(3, 2, 5, 2)), etc. A state ω̌ is called canonical if and

only if ω̌ = τ−1
1 (ω̌1, σ1) for some (ω̌1, σ1). We use the symbol ˇ to distinguish canonical

states in the remainder of this section.
Next we redefine actions, strategies, and payoffs on the reduced state space. We use the

symbol ◦ to distinguish objects defined on the reduced state space from the corresponding
objects defined on the full state space. For example, we write u◦1(ω1, σ1) ∈ U◦1 (ω1, σ1) instead
of u1(ω) ∈ U1(ω), where U◦1 (ω1, σ1) = U1(τ−1

1 (ω1, σ1)) because U1(ω) merely hinges on ω1

(see equation (8)). By construction a strategy u◦1 = ×(ω1,σ1)∈S◦u
◦
1(ω1, σ1) ∈ ×(ω1,σ1)∈S◦U◦1 (ω1, σ1) =

U◦1 defined on the reduced state space satisfies anonymity. Consequently, in terms of the
reduced state space, a symmetric equilibrium is one in which all firms use the same strategy,
i.e., u◦n(ωn, σn) = u◦1(ωn, σn) for all ωn and all σn. Turning to payoffs, we take the local
income function of firm 1 on the reduced state space to be

h◦1((ω1, σ1), u◦1(ω1, σ1), u◦2(τ2(τ−1
1 (ω1, σ1))), . . . , u◦N (τN (τ−1

1 (ω1, σ1))), V ◦
1 )

= h1(τ−1
1 (ω1, σ1), u◦1(ω1, σ1), u◦2(τ2(τ−1

1 (ω1, σ1))), . . . , u◦N (τN (τ−1
1 (ω1, σ1))), Λ1(V ◦

1 )), (25)

where Λn maps firm 1’s value (or policy) function, V ◦
1 , defined on the reduced state space to

firm n’s value (or policy) function, Vn, defined on the full state space. That is, the mapping
Λn is defined such that Vn = Λn(V ◦

1 ) if and only if

Vn(ω) = V ◦
1 (τn(ω))

for all ω.
This notation permits us to define the best-reply correspondence for firm 1 and to

25Gowrisankaran (1999b) develops an algorithm for the efficient representation of the reduced state space.

31



www.manaraa.com

construct the candidate equilibrium. Define the maximal return operator H◦∗
1,u◦1

: V◦1 → V◦1
pointwise by

(H◦∗
1,u◦1

V ◦
1 )(ω1, σ1) = sup

ũ◦1(ω1,σ1)∈U◦1 (ω1,σ1)
h◦1((ω1, σ1), ũ◦1(ω1, σ1),

u◦1(τ2(τ−1
1 (ω1, σ1))), . . . , u◦1(τN (τ−1

1 (ω1, σ1))), V ◦
1 ),

where, to enforce symmetry, we take all rivals of firm 1 to use the same strategy, namely
u◦1. The maximal return function V ◦∗

1,u◦1
satisfies V ◦∗

1,u◦1
= H◦∗

1,u◦1
V ◦∗

1,u◦1
. It is well-defined and

continuous in u◦1 as in the proof of proposition 2. Note that there is no circularity involved in
the construction of V ◦∗

1,u◦1
because u◦1 is taken as given. Define the best-reply correspondence

Υ◦
1 : U◦1 → U◦1 by

Υ◦
1(u

◦
1) =

{
ũ◦1 ∈ U◦1 : ũ◦1(ω1, σ1) ∈ arg sup

ũ◦1(ω1,σ1)∈U◦1 (ω1,σ1)
h◦1((ω1, σ1), ũ◦1(ω1, σ1),

u◦1(τ2(τ−1
1 (ω1, σ1))), . . . , u◦1(τN (τ−1

1 (ω1, σ1))), V ◦∗
1,u◦1

) for all (ω1, σ1)

}
. (26)

Under assumptions 1, 2, and 3, a u◦1 ∈ U◦1 exists such that u◦1 ∈ Υ◦
1(u

◦
1). To see this

note that, as in the proof of proposition 2, Υ◦
1(·) is non-empty, single-valued, and upper

hemi-continuous and thus a function to which Brouwer’s fixed point theorem applies.
Construct a candidate equilibrium by using u◦1 to define firm n’s policy function on the

full state space to be
un = Λn(u◦1). (27)

Turning from the equilibrium policy functions to the corresponding value functions, similarly
define firm n’s value function on the full state space to be

V ∗
n,u−n

= Λn(V ◦∗
1,u◦1

). (28)

By construction, the above value and policy functions are symmetric.
It remains to show that no firm has an incentive to deviate from the candidate equilib-

rium that, by construction, is symmetric. Specifically, we show that even if we allowed a
firm to tailor its policy to the identity of its competitors (as it is always free to do in the
original state space and perhaps also in reality), the firm has no incentive to do so.26 This
justifies the common practice of computing equilibria directly on the reduced state space.

Proof of proposition 5. The proof has three steps. The first step is to show that the
problem of firm n in state ω is identical to the problem of firm 1 in state ω̂ that is obtained
by switching the first with the nth element of ω. Equation (8) implies Un(ω) = U1(ω̂) so
that the set of feasible actions of firm n in state ω is the same as that of firm 1 in state ω̂.

26This final step is absent from Pesendorfer & Schmidt-Dengler’s (2008) proof of their corollary 1 asserting
that a symmetric equilibrium exists if the primitives are symmetric.
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Moreover, for an arbitrary action ũn(ω) ∈ Un(ω) we have

hn(ω, u1(ω), u2(ω), . . . , un−1(ω), ũn(ω), un+1(ω), . . . , uN (ω), V ∗
n,u−n

)

= h1(ω̂, ũn(ω), u2(ω), . . . , un−1(ω), u1(ω), un+1(ω), . . . , uN (ω), V ∗
1,u−1

)

= h1(ω̂, ũn(ω), u2(ω̂), . . . , un−1(ω̂), un(ω̂), un+1(ω̂), . . . , uN (ω̂), V ∗
1,u−1

),

where the first equality follows from the symmetry of the value and local income functions
and the second from the symmetry of the policy functions. Hence, the local income function
of firm n in state ω is the same as that of firm 1 in state ω̂.

The second step is to show that the problem of firm 1 in the (possibly) non-canonical
state ω̂ is identical to the problem of firm 1 in the canonical state ω̌ that is obtained from ω̂

by rearranging the elements of ω̂−1. Formally, ω̌1 = ω̂1 and ω̌n = ω̂κn for some permutation
κ−1 = (κ2, . . . , κN ) of (2, . . . , N). We have U1(ω̂) = U1(ω̌) for the set of feasible actions
and, for an arbitrary action ũ1(ω̂) ∈ U1(ω̂),

h1(ω̂, ũ1(ω̂), u2(ω̂), . . . , uN (ω̂), V ∗
1,u−1

)

= h1(ω̌, ũ1(ω̂), uκ2(ω̂), . . . , uκN (ω̂), V ∗
1,u−1

)

= h1(ω̌, ũ1(ω̂), u2(ω̌), . . . , uN (ω̌), V ∗
1,u−1

),

where the first equality follows from the symmetry of the value and local income functions
and the second from the symmetry of the policy functions.

The third and final step is to show that firm 1 in the canonical state ω̌ has no incentive
to deviate from the candidate equilibrium. For an arbitrary action ũ1(ω̌) ∈ U1(ω̌) we have

h1(ω̌, ũ1(ω̌), u2(ω̌), . . . , uN (ω̌), V ∗
1,u−1

)

= h1(ω̌, ũ1(ω̌), u◦1(τ2(ω̌)), . . . , u◦1(τN (ω̌)), Λ1(V ◦∗
1,u◦1

))

= h1(τ−1
1 (ω̌1, σ1), ũ1(ω̌), u◦1(τ2(τ−1

1 (ω̌1, σ1))), . . . , u◦1(τN (τ−1
1 (ω̌1, σ1))), Λ1(V ◦∗

1,u◦1
))

= h◦1((ω̌1, σ1), ũ1(ω̌), u◦1(τ2(τ−1
1 (ω̌1, σ1))), . . . , u◦1(τN (τ−1

1 (ω̌1, σ1))), V ◦∗
1,u◦1

), (29)

where the first equality follows from equations (27) and (28), the second from the fact
that ω̌ = τ−1(ω̌1, σ1) for some (ω̌1, σ1) because ω̌ is canonical, and the last from equation
(25). Moreover, we have U1(ω̌) = U1(τ−1

1 (ω̌1, σ1)) = U◦1 (ω̌1, σ1) for the set of feasible
actions. Since the last line of equation (29) is the maximand of firm 1 in the best-reply
correspondence in equation (26), firm 1 has no incentive to deviate. Moreover, since the
problem of firm n in state ω is identical to the problem of firm 1 in state ω̌ by the first two
steps of the proof, no firm has an incentive to deviate from the candidate equilibrium.

Combining propositions 3, 4, and 5, we are ready to state our main result establishing
that a computationally tractable equilibrium exists in our model.

Theorem 1 Suppose assumptions 1 and 2 hold. If the transition function P (·) is UIC
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admissible (condition 1) and the model’s primitives are symmetric (condition 2), then a
symmetric equilibrium exists in cutoff entry/exit and pure investment strategies.

7 Convergence to Equilibria in Mixed Strategies

In this section we relate our game with random scrap values/setup costs to the game of
complete information. To do so, we write firm n’s scrap value as φ + εθn if ωn 6= M + 1
and its setup cost as φe + εθe

n if ωn = M + 1, where ε > 0 is a constant scale factor that
measures the importance of incomplete information. Overloading notation, we assume that
θn ∼ F (·) and θe

n ∼ F e(·) with E (θn) = E (θe
n) = 0. Substituting into equation (10), firm

n’s return or local income function hε
n(·) becomes

hε
n(ω, un(ω), Vn)

=





πn(ω) + (1− ξn(ω))φ + ε
∫
θn>F−1(ξn(ω)) θndF (θn)

+ξn(ω)
{
− xn(ω) + βE {Vn(ω′)|ω, ω′n 6= M + 1, ξ−n(ω), x(ω)}

}
if ωn 6= M + 1,

−ε
∫
θe

n<F e−1(ξn(ω)) θe
ndF e(θe

n)

+ξn(ω)
{
− φe − xn(ω) + βE {Vn(ω′)|ω, ω′n 6= M + 1, ξ−n(ω), x(ω)}

}
if ωn = M + 1,

where ξn(ω) =
∫

χn(ω, θn)dF (θn) =
∫

1(φ + εθn < φ̄n(ω))dF (θn) = F
(

φ̄n(ω)−φ
ε

)
, etc.

Proposition 2 in section 4 guarantees the existence of an equilibrium in cutoff entry/exit
and pure investment strategies for any fixed ε > 0. Note that h0

n(·) is the local income
function that obtains in a game of complete information. As our example in section 3 has
shown, there is a need to allow for mixed entry/exit strategies in a game with deterministic
scrap values/setup costs such as Ericson & Pakes (1995). We thus ask if the equilibrium
of the game of incomplete information converges to the equilibrium in mixed entry/exit
strategies as ε approaches zero. The following proposition gives an affirmative answer.

Proposition 6 Suppose assumptions 1, 2, and 3 hold and consider a sequence {εl} such
that liml→∞ εl = 0. Let {ul} be a corresponding sequence of equilibria in cutoff entry/exit
strategies such that liml→∞ ul = u. Then u is an equilibrium in mixed entry/exit strategies.

Proof. Let {V εl

ul } be the corresponding sequence of return functions where V εl

n,ul satisfies

V εl

n,ul = Hεl

n,ulV
εl

n,ul . Repeating the argument that led to equation (15) in section 4 shows

that each element of {V εl

ul } is well-defined due to assumption 1. Moreover, since Hε
n,uVn is

continuous in ε and u for all Vn, lemma 3.2 of Whitt (1980) implies that the return function
V ε

n,u is continuous in ε and u. Let Vn,u = liml→∞ V εl

n,ul for all n.
The proof proceeds in two steps. In the first step, we verify that the limiting strategy

un is optimal given the return function Vn,u for all n. In the second step, we verify that the
return function Vn,u coincides with the maximal return function for all n.
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Suppose un(ω) 6∈ arg supũn(ω)∈Un(ω) h0
n(ω, ũn(ω), u−n(ω), Vn,u) for some ω and some n.

Then there exists ũn(ω) ∈ Un(ω) such that

h0
n(ω, ũn(ω), u−n(ω), Vn,u) > h0

n(ω, un(ω), u−n(ω), Vn,u).

Since hε
n(ω, u(ω), Vn,u) is a continuous function of ε, u(ω), and Vn,u, there exists L large

enough such that

hεl

n (ω, ũn(ω), ul
−n(ω), V εl

n,ul) > hεl

n (ω, ul
n(ω), ul

−n(ω), V εl

n,ul)

for all l ≥ L. Hence, ul
n(ω) 6∈ arg supũn(ω)∈Un(ω) hεl

n (ω, ũn(ω), ul−n(ω), V εl

n,ul) and we obtain
a contradiction.

It remains to verify that the return function Vn,u coincides with the maximal return
function for all n. By construction V εl

n,ul satisfies V εl

n,ul(ω) = hεl

n (ω, ul(ω), V εl

n,ul) for all ω.
Taking limits on both sides shows that Vn,u satisfies Vn,u(ω) = h0

n(ω, u(ω), Vn,u) for all ω.
Using the first step of the proof, we have

Vn,u(ω) = h0
n(ω, u(ω), Vn,u) = sup

ũn(ω)∈Un(ω)
h0

n(ω, ũn(ω), u−n(ω), Vn,u)

for all ω. Since Vn,u is a fixed point of the maximal return operator of the game of complete
information, it is the maximal return function.

Convergence results for static games date back at least to Harsanyi (1973) but, to the
best of our knowledge, ours is the first such result for dynamic stochastic games.27 The
proof of proposition 6 relies on the continuity of the return function V ε

n,u. The fact that
continuity obtains further illustrates the power of the dynamic programming approach.

Note that proposition 6 does not imply that liml→∞ ul exists. On the other hand, since
U is compact every sequence {ul} has a convergent subsequence, and proposition 6 applies
to the subsequential limit. This establishes

Corollary 1 Under assumptions 1, 2, and 3, an equilibrium exists in mixed entry/exit and
pure investment strategies in the Ericson & Pakes (1995) model.

8 Conclusions

This paper provides a general model of dynamic competition in an oligopolistic industry
with investment, entry, and exit and ensures that there exists a computationally tractable
equilibrium for it. Our starting point is the observation that existence of an equilibrium

27In subsequent work, Doraszelski & Escobar (2008) provide a convergence result for general dynamic
stochastic games with finite state and action spaces. They also show that the approachability part of
Harsanyi’s (1973) purification theorem carries over from static games to dynamic stochastic games. That
is, all equilibria of the original game are approached by some equilibrium of the perturbed game as the
perturbation vanishes.
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in the Ericson & Pakes (1995) game of complete information requires mixed entry/exit
strategies. This is problematic from a computational point of view because the existing
algorithms—notably Pakes & McGuire (1994, 2001)—cannot cope with mixed strategies.
We therefore introduce firm heterogeneity in the form of randomly drawn, privately known
scrap values and setup costs into the model. We show that the resulting game of incom-
plete information always has an equilibrium in cutoff entry/exit strategies that is no more
demanding to compute than a (possibly nonexistent) equilibrium in pure entry/exit strate-
gies of the original game of complete information. We further ensure that the equilibrium
is in pure investment strategies by first assuming that a firm’s investment choice always is
uniquely determined. We then show that this assumption is satisfied provided the transition
function is UIC admissible. This, in fact, is a key contribution because UIC admissibility
is defined with respect to the model’s primitives and is easily checked.

We build on our basic existence result in three ways. First, we show that a symmetric
equilibrium exists under the appropriate assumptions on the model’s primitives. Requiring
the equilibrium to be symmetric is important because it reduces the computational burden
and forces heterogeneity to arise endogenously among ex ante identical firms. Second, we
show that, as the distribution of the random scrap values/setup costs becomes degenerate,
equilibria in cutoff entry/exit strategies converge to equilibria in mixed entry/exit strate-
gies of the game of complete information. Third, as a by-product, this last result implies
that there exists an equilibrium in the Ericson & Pakes (1995) model provided that mixed
entry/exit strategies are admissible.
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